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微極液膜表面張力效應之直立外圓柱流的 
非線性液動穩定性分析 

Surface Tension Effect on Nonlinear Waves in a Thin  
Micropolar Liquid Film Flow Down along a Vertical Cylinder 

鄭博仁*1 劉國基 1 龔 傑 2 
Po-Jen Cheng*1, Kuo-Chi Liu1, Chieh Kung2 

摘要 
本文利用長波微擾解所得到之廣義自由面運動方程式，探討直立圓柱面上微

極流體薄膜流表面張力效應所表現之穩定性。首先以正模分析法來探討液膜的線

性穩定性，進而得出線性中立穩定曲線、線性振幅增長率及線性波速。其次應用

時間和空間之多重尺度法研究液膜的弱非線性穩定性質。研究結果顯示，當考慮

表面張力時，流場將會產生亞臨界不穩定及超臨界穩定狀況。再者，微極流體之

表面張力在穩定流場中具有消散擾動能量功能，因而減少對流之流動和表面波之

波峰及波谷間的波動，即干擾後之振幅受到表面張力之影響而較易減少。而在流

場不穩定時，表面張力增加擾動能量，故振幅增加更快。 
關鍵詞：穩定性分析，表面張力 

Abstract 
The influence of surface tension effect on the nonlinear hydrodynamics stability of 

a thin micropolar liquid film flowing down along a vertical cylinder is investigated. A 
long-wave perturbation method is employed to solve generalized nonlinear kinematic 
equations at free film interface. The normal mode approach is first used to compute the 
linear stability solution for the film flow. The method of multiple scales is then used to 
obtain the weak nonlinear dynamics of the film flow for stability analysis. Results in-
dicate that both subcritical instability and supercritical stability conditions possibly to 
occur in a micropolar film flow system with surface tension effect. It is shown that the 
flow stability in the stable states increases as surface tension value increases. However, 
the flow becomes somewhat unstable in unstable states as surface tension value in-
creases. 
Keywords: stability analysis, surface tension 

I. INTRODUCTION 

Benney [1] investigated the nonlinear evolution equa-
tion of free surface by using the method of small parame-
ters. The solutions thus obtained can be used to predict 
nonlinear instability. However, the solutions cannot be 
used to predict supercritical stability since the influence of 
surface tension is not considered in the analysis of the 
small-parameter method. The effect of surface tension was 
realized by many researchers as one of the necessary con-
ditions that will lead to the solution of supercritical stabil-
ity. Lin [2], Nakaya [3] and Krishna and Lin [4] considered 
the significance of surface tension and treated it in terms 
of zeroth order terms in later studies. Pumir et al. [5] fur-

ther included the effect of surface tension into the film 
flow model and solved for the solitary wave solutions. 
Hwang and Weng [6] showed that the conditions of both 
supercritical stability and subcritical instability are possi-
bly to occur for a liquid film flow system. It is thus highly 
desirable to understand the underlying flow characteristics 
and associated time-dependent properties so that suitable 
conditions for homogeneous film growth can be developed 
for various industrial applications. In order to fully under-
stand and characterize the stability conditions for various 
film flows, detailed flow analysis is of great importance.  

Several researchers have already studied the hydro-
dynamic stability problems regarding the fluid films flow-
ing down a vertical cylinder surface. Lin and Liu [7] com-
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pared their analytical solutions with the existing experi-
mental results of falling flow film on a cylinder and 
creeping annular flow threads in viscous liquid. Krantz and 
Zollars [8] presented an asymptotic solution and pointed 
out that the effect of curvature on the stability of the film 
flow is indeed significant. They also showed that the cur-
vature of the cylinder is indeed one of the important fac-
tors that intensify the instability of the film flow. This 
phenomenon is not found in the planar flow. Rosenau and 
Oron [9] derived an amplitude equation which describes 
the evolution of a disturbed free film surface traveling 
down an infinite vertical cylindrical column. The numeri-
cal modeling results indicated that both conditions of su-
percritical stability and subcritical instability are possible 
to occur for the film flow. The results also showed that the 
evolving waves may break at the instant that linearly un-
stable conditions are satisfied. Davalos-Orozco and Ruiz- 
Chavarria [10] investigated the linear stability of a fluid 
layer flowing down inside and outside of a rotating vertical 
cylinder. They pointed out that the centrifugal force could 
stabilize the film flow so as to counteract the destabilizing 
effect of surface tension. In the absence of rotation, the 
stability can still be found for some critical wave numbers. 
Hung et al. [11] investigated the weakly nonlinear stability 
analysis of a condensation film flowing down a vertical 
cylinder. They showed that supercritical stability in the 
linearly unstable region and subcritical instability in the 
linearly stable region can be co-exist. They also indicated 
that the lateral curvature of the cylinder has the destabiliz-
ing effect on the film flow stability.  

A vast majority of studies on thin-film flow problems 
were devoted to the stability analysis of Newtonian fluids. 
The film flow of non-Newtonian fluids attracted less atten-
tion in the past. In recent years, the microstructure of fluid 
flows has emerged as a research subject of great interest to 
many researchers. A subclass of these fluids was named 
micropolar fluids by Eringen [12] who first proposed the 
theory of micropolar fluids. Micropolar fluids exhibit cer-
tain microscopic effects arising from the local structure 
and microrotations of the fluid elements. In application, 
the micropolar fluids may be used to model some man-
made fluids, such as the polymeric fluids, animal blood, 
fluids with additives, and liquid crystals, etc. The exten-
sion of the theory of micropolar fluids to cover the thermal 
effect was developed by Eringen [13]. Liu [14] studied the 
flow stability of micropolar fluids and found that the ini-
tiation of instability was delayed due to the presence of 
microstructures in the fluid. Datta and Sastry [15] studied 
the instability of a horizontal micropolar fluid layer which 
was heated from below. They found that the plot of 
Rayleigh number versus wave number has two branches 
separating the zones of stability. Ahmadi [16] studied the 
same problem by employing a linear theory as well as an 
energy method. It was observed that the micropolar fluid 
layer heated from below is more stable as compared with 
the classical Newtonian fluid, and also found that, no sub-
critical instability region exists. Payne and Straughan [17] 
investigated the Benard problem for a thermo-micropolar 

fluid by the nonlinear energy stability method. They pre-
dicted the subcritical instability may possibly occur, but 
did not infer the existence of subcritical instabilities from 
their work. Later, Franchi and Straughan [18] established a 
nonlinear energy stability analysis for the convection of 
the thermo-micropolar fluid with temperature dependent 
viscosity. They showed that the critical Rayleigh number 
depends strongly on the changes of the interaction coeffi-
cient κ , and indicated that the micropolar coefficient γ  
has very little influence on the convection threshold. 
Chang [19] employed the method of nonlinear analysis to 
study the stability of thin micropolar liquid films flowing 
down long a vertical moving plane. They also showed that 
the micropolar parameter )/( μκ=K  plays an important 
role in stabilizing the film flow.  

The stability of a film flow is a research subject of 
great importance commonly needed in mechanical, 
chemical and nuclear engineering industries for various 
applications including the process of paint finishing, the 
process of laser cutting and heavy casting production 
processes. It is known that macroscopic instabilities can 
cause disastrous conditions to fluid flow. It is thus highly 
desirable to understand the underlying flow characteristics 
and associated time-dependent properties so that suitable 
conditions for homogeneous film growth can be developed 
for various industrial applications. The influence of the 
surface tension of micropolar liquid film on fi-
nite-amplitude equilibrium is studied and characterized 
mathematically. The sensitivity analysis of the surface ten-
sion is also carefully conducted. Several numerical exam-
ples are presented to verify the solutions and to demon-
strate the effectiveness of the proposed modeling proce-
dure. 

II. GENERALIZED KINEMATIC EQUATIONS 

Figure 1 shows the configuration of a thin micropolar 
liquid film flowing down along the outer surface of an 
infinite vertical cylinder. All physical properties are as-
sumed to be constant. The principles of mass, momentum 
and angular momentum conservation for an axisymmetric 
isothermal incompressible micropolar flow configuration 
leads one to a set of system governing equations. Let *u  
and *w  be the velocity components in *r  and *z  di-
rections, respectively and *N  is the angular microrota-
tion momentum. The governing equations can be ex-
pressed in terms of cylindrical coordinates ),( ** zr as [13] 

0)(1
*

*

*

**

*
=

∂
∂+

∂
∂

z
w

r
ur

r
  (1) 

* * *
* *

* * *

* 2 * * 2 * *

* *2 * * *2 *2

*

*

( )

1( )( )

u u uu w
t r z

p u u u u
r r r r z r

N
z

ρ

μ κ

κ

∂ ∂ ∂+ +
∂ ∂ ∂

∂ ∂ ∂ ∂= − + + + + −
∂ ∂ ∂ ∂

∂−
∂  (2) 



鄭博仁 劉國基 龔 傑 
Po-Jen Cheng, Kuo-Chi Liu, Chieh Kung 

 

35

* * *
* *

* * *

* 2 * * 2 *

* *2 * * *2

* *

* *

( )

1( )( )

( )

w w wu w
t r z

p w w w
z r r r z

N N g
r r

ρ

μ κ

κ ρ

∂ ∂ ∂+ +
∂ ∂ ∂

∂ ∂ ∂ ∂= − + + + +
∂ ∂ ∂ ∂

∂+ + +
∂  (3) 

* * *
* *

* * *

2 * * 2 * *

*2 * * *2 *2

* *
*

* *

( )

1( )

( 2 )

N N NJ u w
t r z

N N N N
r r r z r

u w N
z r

ρ

γ

κ

∂ ∂ ∂+ +
∂ ∂ ∂

∂ ∂ ∂= + + −
∂ ∂ ∂

∂ ∂+ − −
∂ ∂  (4) 

where ρ  is a constant density of the flow, *p  is the 
flow pressure, μ  is the molecule fluid viscosity, J  is 
the micro-inertial density, κ  is the vortex viscosity and 
γ  is the spin-gradient viscosity. The last term on the 
right-hand side of Equation (3) is the body force due to 
gravity. 

The appropriate boundary conditions are: 
At the cylinder surface ( ** Rr = ): 
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Fig. 1  Schematic diagram of a micropolar thin film flow traveling down 
along a vertical cylinder 
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where *h  is the local film thickness. The boundary con-
ditions at the interface, Equation (8) and Equation (9), are 
the balance of tangential and normal stresses [20]. In 
Equation (9), *

ap  is the atmosphere pressure, and *S  is 
the surface tension. The discussion of boundary conditions 
for the angular microrotation momentum *N  at solid 
wall and at free surface, shown in Equation (7) and Equa-
tion (10), can be found in Datta and Sastry [15] and 
Ahmadi [16]. Equation (11) is the free surface kinetic 
equation. The variable that is associated with a superscript 
“*” stands for a dimensional quantity. By introducing the 
stream function, *ϕ , into dimensional velocity compo-
nents, they become 
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The dimensionless quantities can also be defined and 
given as 
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where Λ , K  and Δ  are the dimensionless micropolar 
parameters, Re is the Reynolds number, R is the dimen-
sionless radius of the cylinder, λ  is the perturbed wave 
length, and α  is the dimensionless wave number. *

0h  is 
the film thickness of local base flow and *

0u  is the refer-
ence velocity which can be expressed as [11] 
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where ν  is the fluid kinematic viscosity, and 
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associated boundary conditions can now be given as 
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Subscripts of r, z, rr, zz and rz are used to represent various 
partial derivatives of associated underlying variables. 

Since the long wave length modes (i.e. small wave 
number α ) may introduce flow instability to meet our 
analysis objectives, the dimensionless stream function ϕ  
and pressure p are, therefore, expanded here in terms of 
some small wave number α as 

)( 2
10 ααϕϕϕ O++=                (25) 

)( 2
10 αα Oppp ++=   (26) 

)( 2
10 αα ONNN ++=   (27) 

By substituting the above three equations into Equations 
(16)-(24), the system governing equations can then be col-
lected and solved order by order. In the physical and 
mathematical justification, the non-dimensional surface 
tension S is a large value, the term S2α  can be treated as 
a quantity in zeroth order [11]. Franchi and Straughan [18] 
and Hung et al. [21] showed that the micropolar parameter 

)/( jμγ=Λ  has very little effect on the stability of the 
micropolar film. For simplifying the solved equations that 
gives no spin-gradient viscosity effect, neglecting the Λ  
term of Equation (18), one can obtain the solutions of 
stream function for the equations of both the zeroth and 
the first orders given as 
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By substituting the zeroth order and the first order solu-
tions, 0ϕ  and 1ϕ , into the dimensionless free surface 
kinematic equation of Equation (24), the generalized 
nonlinear kinematic equation is obtained and presented as 
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In case of 0=K  and ∞=Δ , the fluid flow becomes a 
typical classical Newtonian film flow. In case of ∞=R , 
the result agrees exactly with the solution of plane flow. 

III. STABILITY ANALYSIS 

The variation of film thickness in the base flow is 
found very small, so it is reasonable to assume that the 
local dimensionless film thickness equals to one. The di-
mensionless film thickness when expressed in perturbed 
state can be expressed as 
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where η  is a perturbed quantity to the stationary film 
thickness. By inserting the above equation into Equation 
(37) and collecting all terms up to the order of 3η , the 
evolution equation of η  is obtained and given as  
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The values of A, B, C, D, E and their derivatives are all 
evaluated at the dimensionless height, h=1, of the film 
flow. 

1. Linear Stability Analysis 

As the nonlinear terms in Equation (44) are neglected, 
the linearized equation is obtained and given as 

0=+++ zzzzzzzt CBA ηηηη    (45) 

In order to use the normal mode method for analysis, we 
assume that 
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where a  is the perturbation amplitude, and c.c. is the 
complex conjugate counterpart. The complex wave celerity, 
d, is given as 
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where rd  is the linear wave speed, and id  is the linear 

growth rate of the amplitudes. For 0>id , the flow is in 
unstable linearly supercritical condition. For 0<id , the 
flow is in stable linearly subcritical condition.  

2. Nonlinear Stability Analysis  

The method of multiple scales is used to analyze the 
stability of the nonlinear system. Several associated no-
tions are defined and expressed as 
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where ε  is a small perturbation parameter, 1t tε= , 
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Equation (51) can now be solved order by order. After 
collecting the terms of order of )(εO  and solving for the 
resulting equation 010 =ηL , the solution can be easily 
obtained as 

..)](exp[),,( 2111 cctdzittza r +−=η   (57) 

After collecting terms and solving for the secular equation 
of order )( 2εO , the solution of 2η  gives 

..)](2exp[2
2 cctdziea r +−=η   (58) 

By substituting both 1η  and 2η  into the equation of or-
der )( 3εO , the resulting equation becomes 
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where  
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The overhead bar appeared in the above expressions stands 
for the complex conjugate of the same variable. Here, 
Equation (59) is generally referred to as the Ginzburg- 
Landau equation [22]. It can be used to investigate the 
weak nonlinear behavior of the fluid film flow. The solu-
tion of the exponential form is assumed and given as 

])(exp[ 220 ttibaa −=  (64) 

By employing the condition of a filtered wave that gives 
no spatial modulation, neglecting the diffusion term, and 
substituting the assumed solution of Equation (64) into 
Equation (59), one can obtain 
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Of course, if E1 becomes zero, the Equation (65) is reduced 
to a linear equation. The second term on the right-hand 
side of Equation (65) is induced by the effect of nonlinear-
ity. It can either decelerate or accelerate the exponential 
growth of the linear disturbance based on the signs of id  
and 1E . Equation (66) can be used to modify the per-
turbed wave speed caused by infinitesimal disturbances 
appeared in the nonlinear system. In the linear unstable 
region )0( >id , the condition for a supercritical stable 
region to exist is given as 01 >E . The threshold ampli-
tude, 0aε , is given as  

1
0 E

d
a i=ε   (67) 

and the nonlinear wave speed is given as 

)(
1

12

E
FddbdNc irrr +=+= ε  (68) 

On the other hand, in the linearly stable region )0( <id , if 
01 <E , the film flow presents the behavior of subcritical 

instability, and 0aε  is the threshold amplitude. The con-
dition for a subcritical stable region to exist is given as 

01 >E . Also, the condition for a neutral stability curve to 
exist is 01 =E . Based upon the discussion presented 
above, various characteristic states of the Landau equation 
can be summarized and presented in Table 1. 

Table 1  Various states of the Landau equation 
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IV. NUMERICAL EXAMPLES 

Figure 1 shows the schematic diagram of a micropo-
lar liquid film traveling down along a vertical cylinder. 
Physical parameters that are selected for study include (1) 
Reynolds numbers ranging from 0 to 15, (2) the dimen-
sionless perturbation wave numbers ranging from 0 to 0.12, 
(3) the values of micropolar parameter K  is 0.5, (4) the 
value of micropolar parameter Δ  is 10, (5) the values of 
dimensionless radius distance including 10 and 20, and (6) 
the values of dimensionless surface tension including 4000, 
6000, and 8000. A numerical example is presented here to 
illustrate the effectiveness of the proposed modeling pro-
cedure in dealing with the surface tension effect of a thin 
micropolar fluid film flowing down along a vertical cylin-
der. In order to validate the result of analytical derivation, 
a finite-amplitude perturbation generator is employed to 
disturb the system for both linear and nonlinear stability 
analyses. Based on the modeling results, the condition for 
thin-film flow stability can now be expressed as a function 
of Reynolds number, Re, dimensionless perturbation wave 
number, α , and dimensionless surface tension, S. Some 
important conclusions are made. The modeling results are 
also used to compare with the analytical solutions given in 
this paper and some other conclusive results appeared in 
the literature.   

1. Linear Stability Solutions 

The neutral stability curve was obtained by comput-
ing the conditions of linear stability for a linear amplitude 
growth rate 0=id . The stability of flow field (α -Re 
plane) is separated into two different regions by the neutral 
curve. In the linearly stable subcritical region, the per-
turbed small waves decay as the perturbation time period 
increases. However, in the linearly unstable supercritical 
region, the perturbed small waves grow as the perturbation 
time period increases. Figure 2 shows the neutral stability 
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curves of the micropolar film flow with different values on 
the dimensionless surface tension S. The results indicate 
that the area of linearly unstable region )0( >id  becomes 
larger for a decreasing S. Figure 3 show the temporal film 
growth rate of micropolar fluid for S=4000, 6000 and 8000. 
The temporal film growth rate increases for cαα < , and 
decreases for cαα >  as the value of S increases. It is also 
shown that the temporal film growth rate increases for an 
increasing Re  in all numerical computations. The results 
also indicate that the larger the value of dimensionless 
surface tension S is, the higher the stability in the stable 
region )0( <id  of a liquid film should be.  

2. Nonlinear Stability Solutions 

As the perturbed wave grows to finite amplitude, the 
linear stability theory is no longer valid for accurate pre-
diction of flow behavior. The theory of nonlinear stability 
should be used to study whether the disturbed wave am-
plitude in the linear stable region will become stable or 
unstable. The problem that subsequent nonlinear evolution 
on disturbance in the linear unstable region will develop to 
a new equilibrium state (supercritical stability) with a fi-
nite amplitude or a unstable situation is also studied. As 
mentioned before, a negative value of 1E  can cause the 
system to become unstable. Such a condition in the linear 
region is referred to as the sub-critical instability. In other 
words, if the amplitude of disturbances is greater than the 
threshold amplitude, the amplitude of disturbed wave will 
increase. This is contradictory to the result predicted by 
using a linear theory. As a matter of fact such a condition 
in the subcritical unstable region can in some cases cause 
the system to become explosive. 

The hatched areas near the neutral stability curves in 
Figure 4 reveal that both the subcritical instability condi-
tion )0,0( 1 << Edi  and the explosive supercritical in-
stability condition )0,0( 1 <> Edi  are possible to occur 
for all values of S that are used in this study. The results also 
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Fig. 2  Linear neutral stability curves for three different S values at 

R=20 

show that the neutral stability curves of 0=id  and 
01 =E  are shifted downward as the values of S increase. 

Therefore, the area of shaded subcritical instability region 
increases and the area of shaded supercritical instability 
region decreases as the values of S increase.  

Figure 5 shows the threshold amplitude in subcritical 
unstable region for various wave numbers with different S 
values at Re=10 and R=20. The results indicate that the 
threshold amplitude 0aε  becomes smaller as the value of 
dimensionless surface tension S increases. In such situa-
tions, the film flow will become unstable. That is to say, if 
the initial finite-amplitude disturbance is less than the 
threshold amplitude, the system will become conditionally 
stable. On the other hand, if the initial finite-amplitude 
disturbance is greater than the threshold amplitude, the 
system will become explosively unstable. 

In the linearly unstable region, the linear amplifica-
tion rate is positive, while the nonlinear amplification rate 
is negative. Therefore, a linear infinitesimal disturbance in 
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Fig. 3  Amplitude growth rate of disturbed waves in micropolar flows 
for three different S values at (a) Re=10 and R=10, (b) 0.1α =  
and R=10 
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the unstable region, instead of going infinite, will reach 
finite equilibrium amplitude as given in Equation (65). 
Figure 6 shows the threshold amplitude in the supercritical 
stable region for various wave numbers under different 
values of dimensionless surface tension S at Re=10 and 
R=20. It is found that the decrease of S will lower the 
threshold amplitude, and the flow will become relatively 
more stable.  

The wave speed of Equation (47) predicted by using 
the linear theory is a constant value for all wave numbers 
and Reynolds number. However, the nonlinear wave speed, 
given by Equation (68), can be influenced by the wave 
number, Reynolds number, dimensionless surface tension 
S, and the radius of cylinder. The nonlinear wave speed is 
plotted in Figure 7 for various wave numbers and dimen-
sionless surface tension S values at Re=10 and R=20. It is 
found that the nonlinear wave speed decreases as the value 
of S increases. 

It is also noted that a cylinder with a smaller radius 
makes the flow relatively more unstable. This is due to the 
surface tension of the lateral curvature. In Equation (22), 
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Fig. 4  Neutral stability curve of micropolar film flows for (a) S=4000 
and R=20, (b) S=8000 and R=20 
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Fig. 5  Threshold amplitude in subcritical unstable region for three dif-

ferent S values at Re=10 and R=20 
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Fig. 6  Threshold amplitude in supercritical stable region for three dif-

ferent S values at Re=10 and R=20 
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Fig. 7  Nonlinear wave speed in supercritical stable region for three 

different S values at Re=10 and R=20 
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the streamwise surface tension term, zzhS 23/13/5 )2(Re αΓ⋅ − , 
is independent of the value of r. However, the lateral sur-
face tension term, 13/13/5 )2(Re −− Γ⋅ rS , is inverse to the 
value of r. When the film flows down the outer surface of 
the cylinder with a smaller radius, the surface tension term 
of the lateral curvature will become larger. Therefore, it 
has a destabilizing effect. This destabilizing effect occurs 
because the radius of the trough of waves have a smaller 
value than that at the crest of the waves, and the surface 
tension will produce large capillary pressure at a smaller 
radius of curvature. This will induce the capillary pressure 
and force the fluid trough to move upward to the crest. 
Thus, the amplitude of the wave is increased. 

As discussed above, it becomes apparent that the sta-
bility characteristic of a film flow traveling down along a 
vertical cylinder is significantly affected by the values of 
dimensionless surface tension S. That is to say, in nearly 
the complete working range, the degree of stability in sta-
ble states increases as the value of S increases. Because the 
effect of the microstructure in micropolar fluid will in-
crease the effective viscosity, it can, therefore, reduce the 
convective motion of flow. Also, the degree of instability 
in unstable states increases as the value of S increases. By 
setting ∞→R , the result becomes a solution for the 
plane flow problem. As compared to the modeling results 
given by Hung et al. [11], it is found that both solutions 
agree well with each other.  

V. CONCLUDING REMARKS 

The stability of a micropolar thin film flow traveling 
down along a vertical cylinder is thoroughly investigated 
in this paper by using the method of long wave perturba-
tion. The generalized nonlinear kinematic equations of the 
free film surface near the wall are derived and numerically 
estimated to study the stability of flow field under different 
values of dimensionless surface tension. Based on the 
modeling results, several conclusions are as follows:  
1. In the linear stability analysis, the neutral stability curve 
that separates the flow field into two different regions was 
first computed for a linear amplitude growth rate of 

0=id . The modeling results indicate that the area of line-
arly unstable region becomes larger for a decreasing S. 
Furthermore, the flow becomes relatively stable if it is 
perturbed by short waves at a low Reynolds number and a 
larger surface tension in the stable region. It is also noted 
that the increasing value of S for smaller α  and larger 
Re  will increase the growth rate of temporal film in the 
unstable region. 

2. In the nonlinear stability analysis, it is noted that the 
area of shaded subcritical instability region decreases as 
the value of S decreases. On the other hand, the area of 
shaded supercritical instability region increases with a de-
creasing S value. It is shown that the threshold amplitude 

0aε  in the subcritical instability region decreases as the 
value of S increases. If the initial finite-amplitude distur-
bance is greater than the threshold amplitude value, the 

system will become explosively unstable. The threshold 
amplitude in the supercritical stability region increase with 
an increasing S value. The nonlinear wave speed in the 
supercritical stability region decrease with an increasing S 
value.  

3. When the surface tension of a micropolor liquid is con-
sidered, it strongly affects the stability characteristic of a 
flow film. The simulation results indicate that the larger S 
will cause relatively stable in the stable region and will 
cause relatively unstable in the unstable region as traveling 
down along the vertical cylinder. In other words, the de-
gree of stability in stable states increases as the value of S 
increases. Also, the degree of instability in unstable states 
increases as the value of S increases.  
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