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Surface Tension Effect on Nonlinear Waves in a Thin
Micropolar Liquid Film Flow Down along a Vertical Cylinder
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Abstract

oA e SLE

The influence of surface tension effect on the nonlinear hydrodynamics stability of

a thin micropolar liquid film flowing down along a vertical cylinder is investigated. A
long-wave perturbation method is employed to solve generalized nonlinear kinematic
equations at free film interface. The normal mode approach is first used to compute the
linear stability solution for the film flow. The method of multiple scales is then used to
obtain the weak nonlinear dynamics of the film flow for stability analysis. Results in-
dicate that both subcritical instability and supercritical stability conditions possibly to
occur in a micropolar film flow system with surface tension effect. It is shown that the
flow stability in the stable states increases as surface tension value increases. However,
the flow becomes somewhat unstable in unstable states as surface tension value in-
creases.

Keywords: stability analysis, surface tension

[. INTRODUCTION

Benney [1] investigated the nonlinear evolution equa-
tion of free surface by using the method of small parame-
ters. The solutions thus obtained can be used to predict
nonlinear instability. However, the solutions cannot be
used to predict supercritical stability since the influence of
surface tension is not considered in the analysis of the
small-parameter method. The effect of surface tension was
realized by many researchers as one of the necessary con-
ditions that will lead to the solution of supercritical stabil-
ity. Lin [2], Nakaya [3] and Krishna and Lin [4] considered
the significance of surface tension and treated it in terms
of zeroth order terms in later studies. Pumir ez al. [5] fur-

ther included the effect of surface tension into the film
flow model and solved for the solitary wave solutions.
Hwang and Weng [6] showed that the conditions of both
supercritical stability and subcritical instability are possi-
bly to occur for a liquid film flow system. It is thus highly
desirable to understand the underlying flow characteristics
and associated time-dependent properties so that suitable
conditions for homogeneous film growth can be developed
for various industrial applications. In order to fully under-
stand and characterize the stability conditions for various
film flows, detailed flow analysis is of great importance.
Several researchers have already studied the hydro-
dynamic stability problems regarding the fluid films flow-
ing down a vertical cylinder surface. Lin and Liu [7] com-
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pared their analytical solutions with the existing experi-
mental results of falling flow film on a cylinder and
creeping annular flow threads in viscous liquid. Krantz and
Zollars [8] presented an asymptotic solution and pointed
out that the effect of curvature on the stability of the film
flow is indeed significant. They also showed that the cur-
vature of the cylinder is indeed one of the important fac-
tors that intensify the instability of the film flow. This
phenomenon is not found in the planar flow. Rosenau and
Oron [9] derived an amplitude equation which describes
the evolution of a disturbed free film surface traveling
down an infinite vertical cylindrical column. The numeri-
cal modeling results indicated that both conditions of su-
percritical stability and subcritical instability are possible
to occur for the film flow. The results also showed that the
evolving waves may break at the instant that linearly un-
stable conditions are satisfied. Davalos-Orozco and Ruiz-
Chavarria [10] investigated the linear stability of a fluid
layer flowing down inside and outside of a rotating vertical
cylinder. They pointed out that the centrifugal force could
stabilize the film flow so as to counteract the destabilizing
effect of surface tension. In the absence of rotation, the
stability can still be found for some critical wave numbers.
Hung et al. [11] investigated the weakly nonlinear stability
analysis of a condensation film flowing down a vertical
cylinder. They showed that supercritical stability in the
linearly unstable region and subcritical instability in the
linearly stable region can be co-exist. They also indicated
that the lateral curvature of the cylinder has the destabiliz-
ing effect on the film flow stability.

A vast majority of studies on thin-film flow problems
were devoted to the stability analysis of Newtonian fluids.
The film flow of non-Newtonian fluids attracted less atten-
tion in the past. In recent years, the microstructure of fluid
flows has emerged as a research subject of great interest to
many researchers. A subclass of these fluids was named
micropolar fluids by Eringen [12] who first proposed the
theory of micropolar fluids. Micropolar fluids exhibit cer-
tain microscopic effects arising from the local structure
and microrotations of the fluid elements. In application,
the micropolar fluids may be used to model some man-
made fluids, such as the polymeric fluids, animal blood,
fluids with additives, and liquid crystals, etc. The exten-
sion of the theory of micropolar fluids to cover the thermal
effect was developed by Eringen [13]. Liu [14] studied the
flow stability of micropolar fluids and found that the ini-
tiation of instability was delayed due to the presence of
microstructures in the fluid. Datta and Sastry [15] studied
the instability of a horizontal micropolar fluid layer which
was heated from below. They found that the plot of
Rayleigh number versus wave number has two branches
separating the zones of stability. Ahmadi [16] studied the
same problem by employing a linear theory as well as an
energy method. It was observed that the micropolar fluid
layer heated from below is more stable as compared with
the classical Newtonian fluid, and also found that, no sub-
critical instability region exists. Payne and Straughan [17]
investigated the Benard problem for a thermo-micropolar

fluid by the nonlinear energy stability method. They pre-
dicted the subcritical instability may possibly occur, but
did not infer the existence of subcritical instabilities from
their work. Later, Franchi and Straughan [18] established a
nonlinear energy stability analysis for the convection of
the thermo-micropolar fluid with temperature dependent
viscosity. They showed that the critical Rayleigh number
depends strongly on the changes of the interaction coeffi-
cient K, and indicated that the micropolar coefficient 7
has very little influence on the convection threshold.
Chang [19] employed the method of nonlinear analysis to
study the stability of thin micropolar liquid films flowing
down long a vertical moving plane. They also showed that
the micropolar parameter K(= &/ ) plays an important
role in stabilizing the film flow.

The stability of a film flow is a research subject of
great importance commonly needed in mechanical,
chemical and nuclear engineering industries for various
applications including the process of paint finishing, the
process of laser cutting and heavy casting production
processes. It is known that macroscopic instabilities can
cause disastrous conditions to fluid flow. It is thus highly
desirable to understand the underlying flow characteristics
and associated time-dependent properties so that suitable
conditions for homogeneous film growth can be developed
for various industrial applications. The influence of the
surface tension of micropolar liquid film on fi-
nite-amplitude equilibrium is studied and characterized
mathematically. The sensitivity analysis of the surface ten-
sion is also carefully conducted. Several numerical exam-
ples are presented to verify the solutions and to demon-
strate the effectiveness of the proposed modeling proce-
dure.

II. GENERALIZED KINEMATIC EQUATIONS

Figure 1 shows the configuration of a thin micropolar
liquid film flowing down along the outer surface of an
infinite vertical cylinder. All physical properties are as-
sumed to be constant. The principles of mass, momentum
and angular momentum conservation for an axisymmetric
isothermal incompressible micropolar flow configuration
leads one to a set of system governing equations. Let u”
and w" be the velocity components in »* and z° di-
rections, respectively and N~ is the angular microrota-
tion momentum. The governing equations can be ex-
pressed in terms of cylindrical coordinates (', z")as [13]
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where P is a constant density of the flow, p° is the
flow pressure, 4 is the molecule fluid viscosity, J is
the micro-inertial density, & is the vortex viscosity and
7 is the spin-gradient viscosity. The last term on the
right-hand side of Equation (3) is the body force due to
gravity.
The appropriate boundary conditions are:

At the cylinder surface (" =R’):
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Fig. 1 Schematic diagram of a micropolar thin film flow traveling down

along a vertical cylinder
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where %" is the local film thickness. The boundary con-

ditions at the interface, Equation (8) and Equation (9), are
the balance of tangential and normal stresses [20]. In
Equation (9), p, is the atmosphere pressure, and S~ is
the surface tension. The discussion of boundary conditions
for the angular microrotation momentum N at solid
wall and at free surface, shown in Equation (7) and Equa-
tion (10), can be found in Datta and Sastry [15] and
Ahmadi [16]. Equation (11) is the free surface kinetic
equation. The variable that is associated with a superscript
™" stands for a dimensional quantity. By introducing the
stream function, ¢ , into dimensional velocity compo-
nents, they become

Lo o 19w (12)
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The dimensionless quantities can also be defined and
given as
r oz ot h ®
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where A, K and A are the dimensionless micropolar
parameters, Re is the Reynolds number, R is the dimen-
sionless radius of the cylinder, A is the perturbed wave
length, and « is the dimensionless wave number. 74, is
the film thickness of local base flow and u, is the refer-
ence velocity which can be expressed as [11]

gh,’
u, = 14
% (1)
where v is the fluid kinematic viscosity, and
I'=[2(1+R)’ In (1+R) (1+2R)]" (15)

Thus, the non-dimensional governing equations and the
associated boundary conditions can now be given as

p, =aRe'[(1+K) g, —r ¢ )-KN ]+0(@) (16)
(1+Ky(r("'p),), —Kr™'(rN), =4T
—r 0.0 -1 p)+0a’) (17)

A(r™'(rN),), —2KAN + KA(r '),
=aRe(N,+r'o. N, —r"'@ N.)+O0(c*) (18)

+aRe(—p. +1'g +170.0,
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at the cylinder surface (r =R)

=9 =¢.=0 19)

N=2"(r"9), +0() (20)
at free surface (r =R+ h)

(r'e,), =0+0(a’) @n

p=-28-Re*’ QD) (*h_ —r")+a{-2Re"
[, —r"p )b +r ¢ —r'p_1}+0(a) (22)
N=0 (23)

h—r(@.h, +¢,)=0 (24)

Subscripts of r, z, 1, zz and rz are used to represent various
partial derivatives of associated underlying variables.

Since the long wave length modes (i.e. small wave
number ¢ ) may introduce flow instability to meet our
analysis objectives, the dimensionless stream function @
and pressure p are, therefore, expanded here in terms of
some small wave number o as

p=0,+ap +0@’) (25)
p=p,+aop, +0(a") (26)
N =N, +aN, +0(a*) 27)

By substituting the above three equations into Equations
(16)-(24), the system governing equations can then be col-
lected and solved order by order. In the physical and
mathematical justification, the non-dimensional surface
tension S is a large value, the term @*S can be treated as
a quantity in zeroth order [11]. Franchi and Straughan [18]
and Hung ef al. [21] showed that the micropolar parameter
A(=7y/1j) has very little effect on the stability of the
micropolar film. For simplifying the solved equations that
gives no spin-gradient viscosity effect, neglecting the A
term of Equation (18), one can obtain the solutions of
stream function for the equations of both the zeroth and
the first orders given as

D=
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By substituting the zeroth order and the first order solu-
tions, ¢, and ¢,, into the dimensionless free surface
kinematic equation of Equation (24), the generalized
nonlinear kinematic equation is obtained and presented as

h + A(Wh, + B(hh_ +C(hyh__+ D(h)h> + E(h)h.h_ =0 (37)

where
ar
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B(h) = oSRe ™ (21" (4gInQ -3
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+32(InQ)° +8(nRY' } [ "R+ 'R (-4

1, 2
+121nQ)+Zq (5-36InQ+40(InQ)"1} (39)

1 $2/3 1/3 3 = 3_E
qh)—mofSRe (D" (@R g+4q In0-3q q)(40)
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In case of K =0 and A =co, the fluid flow becomes a
typical classical Newtonian film flow. In case of R =-oo,
the result agrees exactly with the solution of plane flow.

III. STABILITY ANALYSIS

The variation of film thickness in the base flow is
found very small, so it is reasonable to assume that the
local dimensionless film thickness equals to one. The di-
mensionless film thickness when expressed in perturbed
state can be expressed as

ht,z)=1+n(t,z), n=0(a) 43)
where 77 is a perturbed quantity to the stationary film
thickness. By inserting the above equation into Equation
(37) and collecting all terms up to the order of 7°, the

evolution equation of 77 is obtained and given as
7+ AN+ B+ Cnp. + D1 + Enap.. =—(An + %nz)nz

, B’ , Cc' ,
+(Bf7+7n2)77ﬂ +(Cn+7n2)f7ﬁ +(D+Dnn’

+(E+Emnn_1+0m") “4)

The values of A, B, C, D, E and their derivatives are all
evaluated at the dimensionless height, h=1, of the film
flow.

1. Linear Stability Analysis

As the nonlinear terms in Equation (44) are neglected,
the linearized equation is obtained and given as
n+A4An. +Bn. +Cn_. =0 (45)
In order to use the normal mode method for analysis, we
assume that
n=aexpli(z—dt)]+cc. (46)
where a is the perturbation amplitude, and c.c. is the

complex conjugate counterpart. The complex wave celerity,
d, is given as

d=d +id = A+i(B-C) 47)

where d, is the linear wave speed, and d, is the linear

growth rate of the amplitudes. For d, >0, the flow is in
unstable linearly supercritical condition. For d, <0, the
flow is in stable linearly subcritical condition.

2. Nonlinear Stability Analysis

The method of multiple scales is used to analyze the
stability of the nonlinear system. Several associated no-
tions are defined and expressed as

d 0 0  , 0

— > —+Ee—+& — (48)
ot dt o ot,

9.,9,,0 (49)
oz 0dz 0z

n(gszazptatptz) = 8771 +€2772 +€3773 (50)

where & is a small perturbation parameter, f =&t ,
t =g’t, z, =&z. After substituting the above expres-

sions into Equation (44) and performing expansion and
rearrangement, the equation can be obtained as

(L, +€L, +e L)en +&n, +€n)=—€N,-€'N, (51)
where

d 0 9’ 9

L =—+A—+B—+C— (52)
ot oz oz’ oz*

L :i+Ai+ZB J 9 +4C 909 (53)
or, oz, 0z oz, dz’ oz,

L2:i+ga +6Ca J (54)
ot, oz, dz’ dz}

N, =Ann. +Bnn. +Cnn,...+Dn. +En.n,_.(55)

N, =A@mn,, +n.1n,+n1,)+B @0, +2n7,_,
A1,70,)+C (0, A4,y 7070+ D(20, 77,
2010 )+ EO) 1 3070y 7000 A7)0

1. - 1., ,
-4 . +5B mn,. +C ... +Dnm,

+EnN... (56)

Equation (51) can now be solved order by order. After
collecting the terms of order of O(€) and solving for the
resulting equation L7, =0, the solution can be easily
obtained as

n, =a(z,,t,,t,)expli(z—d, t)]+c.c. 57
After collecting terms and solving for the secular equation
of order O(g?), the solution of 77, gives

n, =ea’ exp[2i(z—d, 1)]+cc. (58)
By substituting both 77, and 77, into the equation of or-
der O(e?), the resulting equation becomes

8a+Daa_

XD 2% e2da+(E+iF)ata=0 59
8t2 laZIZ i ( 1 1) ( )
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where
e=e vie, =& I6céth_ = +i16(:f4B (60)
D, =B-6C (61)
E, =(-5B +17C +4D—10E)e, — A'e,
3 .. 3 . : ,
+(_§B +EC +D —-E) (62)

, 1 ! 1 "
F=(-5B +17C +4D-10E)e, + e+ 4 (63)

The overhead bar appeared in the above expressions stands
for the complex conjugate of the same variable. Here,
Equation (59) is generally referred to as the Ginzburg-
Landau equation [22]. It can be used to investigate the
weak nonlinear behavior of the fluid film flow. The solu-
tion of the exponential form is assumed and given as

a = a, exp[-ib(t,)t,] (64)

By employing the condition of a filtered wave that gives
no spatial modulation, neglecting the diffusion term, and
substituting the assumed solution of Equation (64) into
Equation (59), one can obtain

da,

—=(e?d —E,al)a, (65)
ot

2

b, ] _ Fal (66)
ot,

Of course, if E; becomes zero, the Equation (65) is reduced
to a linear equation. The second term on the right-hand
side of Equation (65) is induced by the effect of nonlinear-
ity. It can either decelerate or accelerate the exponential
growth of the linear disturbance based on the signs of 4,
and E,. Equation (66) can be used to modify the per-
turbed wave speed caused by infinitesimal disturbances
appeared in the nonlinear system. In the linear unstable
region (d, > 0), the condition for a supercritical stable
region to exist is given as E, > 0. The threshold ampli-
tude, &a,, is given as

e, = |— (67)

and the nonlinear wave speed is given as

Ne,=d +¢e’b=d, +d, (ﬂ) (68)
El

On the other hand, in the linearly stable region (d, <0), if
E, <0, the film flow presents the behavior of subcritical
instability, and &a, is the threshold amplitude. The con-
dition for a subcritical stable region to exist is given as
E, >0. Also, the condition for a neutral stability curve to
exist is E, =0 . Based upon the discussion presented
above, various characteristic states of the Landau equation
can be summarized and presented in Table 1.

Table 1  Various states of the Landau equation

d, 5 conditional
ga,< (=2 | a,—0 e
subcritical a, <( E, ) 0 stability
linearly instability 1 —
stable E <0 d 5 T subcritica
iti €ay>(—) a, explosive
(subcritical E
i ! state
region)
d, <0 subcritical
(absolute)
stability a, =0
E >0
supercritical
explosive T
a
linearly state 0
unstable E <0
(supercriti- P
ca;regl(())n) supercritical ga, — (El )?
P stability o
E >0 Ncr_>dr+d,-*l
1

IV. NUMERICAL EXAMPLES

Figure 1 shows the schematic diagram of a micropo-
lar liquid film traveling down along a vertical cylinder.
Physical parameters that are selected for study include (1)
Reynolds numbers ranging from 0 to 15, (2) the dimen-
sionless perturbation wave numbers ranging from 0 to 0.12,
(3) the values of micropolar parameter K is 0.5, (4) the
value of micropolar parameter A is 10, (5) the values of
dimensionless radius distance including 10 and 20, and (6)
the values of dimensionless surface tension including 4000,
6000, and 8000. A numerical example is presented here to
illustrate the effectiveness of the proposed modeling pro-
cedure in dealing with the surface tension effect of a thin
micropolar fluid film flowing down along a vertical cylin-
der. In order to validate the result of analytical derivation,
a finite-amplitude perturbation generator is employed to
disturb the system for both linear and nonlinear stability
analyses. Based on the modeling results, the condition for
thin-film flow stability can now be expressed as a function
of Reynolds number, Re, dimensionless perturbation wave
number, « , and dimensionless surface tension, S. Some
important conclusions are made. The modeling results are
also used to compare with the analytical solutions given in
this paper and some other conclusive results appeared in
the literature.

1. Linear Stability Solutions

The neutral stability curve was obtained by comput-
ing the conditions of linear stability for a linear amplitude
growth rate d, =0. The stability of flow field (« -Re
plane) is separated into two different regions by the neutral
curve. In the linearly stable subcritical region, the per-
turbed small waves decay as the perturbation time period
increases. However, in the linearly unstable supercritical
region, the perturbed small waves grow as the perturbation
time period increases. Figure 2 shows the neutral stability
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curves of the micropolar film flow with different values on
the dimensionless surface tension S. The results indicate
that the area of linearly unstable region (d, >0) becomes
larger for a decreasing S. Figure 3 show the temporal film

growth rate of micropolar fluid for S=4000, 6000 and 8000.

The temporal film growth rate increases for < ¢, , and
decreases for a > ¢, as the value of S increases. It is also
shown that the temporal film growth rate increases for an
increasing Re in all numerical computations. The results
also indicate that the larger the value of dimensionless
surface tension S is, the higher the stability in the stable
region (d, <0) of aliquid film should be.

2. Nonlinear Stability Solutions

As the perturbed wave grows to finite amplitude, the
linear stability theory is no longer valid for accurate pre-
diction of flow behavior. The theory of nonlinear stability
should be used to study whether the disturbed wave am-
plitude in the linear stable region will become stable or
unstable. The problem that subsequent nonlinear evolution
on disturbance in the linear unstable region will develop to
a new equilibrium state (supercritical stability) with a fi-
nite amplitude or a unstable situation is also studied. As
mentioned before, a negative value of £, can cause the
system to become unstable. Such a condition in the linear
region is referred to as the sub-critical instability. In other
words, if the amplitude of disturbances is greater than the
threshold amplitude, the amplitude of disturbed wave will
increase. This is contradictory to the result predicted by
using a linear theory. As a matter of fact such a condition
in the subcritical unstable region can in some cases cause
the system to become explosive.

The hatched areas near the neutral stability curves in
Figure 4 reveal that both the subcritical instability condi-
tion (d, <0,E <0) and the explosive supercritical in-
stability condition (d, >0,E, <0) are possible to occur

for all values of S that are used in this study. The results also

— —— 6000
—--— 8000

Fig. 2 Linear neutral stability curves for three different S values at
R=20

show that the neutral stability curves of d,=0 and
E, =0 are shifted downward as the values of S increase.
Therefore, the area of shaded subcritical instability region
increases and the area of shaded supercritical instability
region decreases as the values of S increase.

Figure 5 shows the threshold amplitude in subcritical
unstable region for various wave numbers with different S
values at Re=10 and R=20. The results indicate that the
threshold amplitude &2, becomes smaller as the value of
dimensionless surface tension S increases. In such situa-
tions, the film flow will become unstable. That is to say, if
the initial finite-amplitude disturbance is less than the
threshold amplitude, the system will become conditionally
stable. On the other hand, if the initial finite-amplitude
disturbance is greater than the threshold amplitude, the
system will become explosively unstable.

In the linearly unstable region, the linear amplifica-
tion rate is positive, while the nonlinear amplification rate
is negative. Therefore, a linear infinitesimal disturbance in
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Fig. 3 Amplitude growth rate of disturbed waves in micropolar flows
for three different S values at (a) Re=10 and R=10, (b) a=0.1
and R=10
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the unstable region, instead of going infinite, will reach
finite equilibrium amplitude as given in Equation (65).
Figure 6 shows the threshold amplitude in the supercritical
stable region for various wave numbers under different
values of dimensionless surface tension S at Re=10 and
R=20. It is found that the decrease of S will lower the
threshold amplitude, and the flow will become relatively
more stable.

The wave speed of Equation (47) predicted by using
the linear theory is a constant value for all wave numbers
and Reynolds number. However, the nonlinear wave speed,
given by Equation (68), can be influenced by the wave
number, Reynolds number, dimensionless surface tension
S, and the radius of cylinder. The nonlinear wave speed is
plotted in Figure 7 for various wave numbers and dimen-
sionless surface tension S values at Re=10 and R=20. It is
found that the nonlinear wave speed decreases as the value
of S increases.

It is also noted that a cylinder with a smaller radius
makes the flow relatively more unstable. This is due to the
surface tension of the lateral curvature. In Equation (22),

(b)
Fig. 4 Neutral stability curve of micropolar film flows for (a) S=4000
and R=20, (b) S=8000 and R=20
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the streamwise surface tension term, S-Re*”(2I)"a’h_,
is independent of the value of r. However, the lateral sur-
face tension term, S§-Re™”(2I)"*r™', is inverse to the
value of r. When the film flows down the outer surface of
the cylinder with a smaller radius, the surface tension term
of the lateral curvature will become larger. Therefore, it
has a destabilizing effect. This destabilizing effect occurs
because the radius of the trough of waves have a smaller
value than that at the crest of the waves, and the surface
tension will produce large capillary pressure at a smaller
radius of curvature. This will induce the capillary pressure
and force the fluid trough to move upward to the crest.
Thus, the amplitude of the wave is increased.

As discussed above, it becomes apparent that the sta-
bility characteristic of a film flow traveling down along a
vertical cylinder is significantly affected by the values of
dimensionless surface tension S. That is to say, in nearly
the complete working range, the degree of stability in sta-
ble states increases as the value of S increases. Because the
effect of the microstructure in micropolar fluid will in-
crease the effective viscosity, it can, therefore, reduce the
convective motion of flow. Also, the degree of instability
in unstable states increases as the value of S increases. By
setting R — o, the result becomes a solution for the
plane flow problem. As compared to the modeling results
given by Hung et al. [11], it is found that both solutions
agree well with each other.

V. CONCLUDING REMARKS

The stability of a micropolar thin film flow traveling
down along a vertical cylinder is thoroughly investigated
in this paper by using the method of long wave perturba-
tion. The generalized nonlinear kinematic equations of the
free film surface near the wall are derived and numerically
estimated to study the stability of flow field under different
values of dimensionless surface tension. Based on the
modeling results, several conclusions are as follows:

1. In the linear stability analysis, the neutral stability curve
that separates the flow field into two different regions was
first computed for a linear amplitude growth rate of
d, =0, The modeling results indicate that the area of line-
arly unstable region becomes larger for a decreasing S.
Furthermore, the flow becomes relatively stable if it is
perturbed by short waves at a low Reynolds number and a
larger surface tension in the stable region. It is also noted
that the increasing value of S for smaller « and larger
Re will increase the growth rate of temporal film in the
unstable region.

2. In the nonlinear stability analysis, it is noted that the
area of shaded subcritical instability region decreases as
the value of S decreases. On the other hand, the area of
shaded supercritical instability region increases with a de-
creasing S value. It is shown that the threshold amplitude
&a, in the subcritical instability region decreases as the
value of S increases. If the initial finite-amplitude distur-
bance is greater than the threshold amplitude value, the

system will become explosively unstable. The threshold
amplitude in the supercritical stability region increase with
an increasing S value. The nonlinear wave speed in the
supercritical stability region decrease with an increasing S
value.

3. When the surface tension of a micropolor liquid is con-
sidered, it strongly affects the stability characteristic of a
flow film. The simulation results indicate that the larger S
will cause relatively stable in the stable region and will
cause relatively unstable in the unstable region as traveling
down along the vertical cylinder. In other words, the de-
gree of stability in stable states increases as the value of S
increases. Also, the degree of instability in unstable states
increases as the value of S increases.
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